Development Journal for universal washing machine damper
Development Journal
Universal Washing Machine Damper
1 Introduction
This is the development journal for an open source hardware washing machine damper. The damper is the most important part for long mechanical life of a washing machine. …
2 General technical facts
what are typical damper types? which one fail sooner, which ones last? damper parameters? loads/stresses/frequencies/ damping-power /thermal losses/ differential equations that describe the system of mass/spring coeff/damper —> forces —-> design
- length: tbd.
- mounting holes: 8.0 mm for fitting screw
3 fundamental differential equations for mass-spring-damper-sytsem
3.1 amplitude vs. frequency
The following GNU Octave script calculates and plots the amplitude of a damped mass-spring oscillator depending on the excitation frequency.
% spring_dampe_mass_amplitude.m
% Calculates and plots the amplitude of a damped
% spring–mass oscillator as a function of the excitation frequency.
clear all; close all; clc;
% ---- Parameters -------------------------------------------------
m = 40.0; % Mass / kg
k = 15000.0; % Spring constant / N/m
c = 1.0; % Damping constant / N·s/m (0 = undamped)
F0 = 1.0; % Amplitude of the excitation force / N
% Natural angular frequency and natural frequency
omega0 = sqrt(k/m); % / rad/s
f0 = omega0/(2*pi); % / Hz
% Frequency axis around the natural frequency
f_min = 0.0 * f0; % Lower limit / Hz
f_max = 3.0 * f0; % Upper limit / Hz
N = 1000; % Number of support points
f = linspace(f_min, f_max, N); % Frequency [Hz]
omega = 2*pi*f; % Angular frequency [rad/s]
% ---- Amplitude calculation --------------------------------------
% A(omega) = F0 / sqrt((k - m*omega^2)^2 + (c*omega)^2)
num = F0;
den = sqrt( (k - m.*omega.^2).^2 + (c.*omega).^2 );
A = num ./ den;
% ---- Spring force calculation -----------------------------------
% Peak spring force magnitude: |F_spring| = k * A (from F_s = -k x)
F_spring = k .* A; % / N
% ---- Plot ------------------------------------------------------
figure;
plot(f, A, 'LineWidth', 2, 'DisplayName', 'Amplitude');
hold on;
plot(f, F_spring/1000, 'LineWidth', 2, 'DisplayName', 'Spring Force /kN'); % Scaled for visibility
grid on;
xlabel('Frequency f /Hz');
ylabel('Amplitude A /m , Force / kN');
title('Amplitude and Spring Force of Damped Spring-Mass Oscillator');
legend('Location', 'best');
% Enlarge font size for all axes text (title, labels, ticks, legend)
set(gca, 'FontSize', 16); % Adjust 16 to your preferred size (e.g., 20 for even larger)
% Mark the natural frequency
y_eig = interp1(f, A, f0); % Amplitude at natural frequency
plot(f0, y_eig, 'ro', 'MarkerSize', 8, 'LineWidth', 2);
text(f0, y_eig, sprintf(' f_0 = %.2f Hz', f0), ...
'VerticalAlignment', 'bottom');
drawnow;
% pause; % Optionally enable if you want the window to remain open
3.2 unbalanced forces vs. rpm
The following scipt calculates the unbalance forces as a funktion of the rotations per minute. Huge forces arise out of a unproper balance which is why the Fairdevices control unit needs to have function to minimise the unbalance of loundry inside the machine.
% Unbalance force of a rotating mass
% m in kg, r in m, n in 1/min
clear all; close all; clc;
% Parameters
r = 0.25; % Radius in m (example value 0.1 m)
n = linspace(0, 1400, 500); % Speed from 0 to 1400 rpm
% Convert speed to angular velocity
omega = 2*pi*n/60; % rad/s
% Family of curves for masses 1 ... 8 kg
m_vec = 1:1:8;
figure;
hold on; grid on;
for m = m_vec
F = m * r .* (omega.^2); % Unbalance force in N
plot(n, F, 'DisplayName', sprintf('m = %d kg', m));
end
xlabel('Speed n [rpm]');
ylabel('Unbalance force F [N]');
title(sprintf('Unbalance force F(n) for r = %.3f m and m = 1...8 kg', r));
legend('show', 'Location', 'northwest');
DIAGRAM placeholder —
3.3 spring constant
Assumptions:
- mass of tub = 30 kg
- water mass = 10 kg
- loundry mass = 1..8 kg
max delta for static load: 2.5 cm
Spring constant for 3 parallel springs: 15000 N/m
2Do / Next Steps
-
Documatation of physical and mathematical fundamentales to calculate load / stresses / amplidudes / optimum values by equations, figures, etc. All ‘scientific’ knowledge should be gathered. It’s the base for opimisation by calculations and not trying ;)
- Determination of typical values for
- spring constants
- damper constants
- massrange of empty and fully loaded washing drum in washing machines.
- Note values in this document
- calculation of forces and amplitudes, maximum allowable amplitudes / imbalance of loundry
- Investigation / List of available oil damper
- concept of frictionless, wearless, electromagnetic damper by Eddy Current or by generator coil
- estimation of unbalance force
…